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Abstract

Quantum information theory is the new field of physics and electrical engineering that arose from the application

of fundamental physics concepts in communications and computing. In this paper, aiming to calculate some prop-

erties of quantum communication systems and the quantum entanglement measure, for C2 �C2 systems, based on

relative entropy, two numerical algorithms are presented. The first one is based on the codification of the possible

solution in a binary string and in the application, in that string, of an assembly algorithm, such as one used in DNA

construction. The second one is the construction of a genetic algorithm where a string of density matrices and

quantum gates in the reproduction stage are used. Both algorithms are used in situations where the best solution

needs to be found. Numerical simulations are presented and the advantages and disadvantages of the algorithms are

discussed.
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1. Introduction

Quantum information is a new area in computing and communications allowing powerful applications,

without classical counterparts, like teleportation and quantum cryptography [1,2]. In this wide research

area we can find very interesting problems, two examples that will be addressed in this work are: (1) The
calculation of the relative entropy of entanglement. (2) Given a 4� 4 unitary matrix, what is the pair of

qubits that should be used at the input in order to have the maximal entanglement of the output state? Both

of these problems require the search of an optimal solution. In order to solve these kind of problems we can

use traditional numerical methods, like gradients� method, or numerical intelligence, like genetic algorithm

or neural networks. In this paper, two algorithms based on numerical intelligence, for optimization

problems in quantum information theory are proposed. The first one uses an algorithm based on the

classical algorithm of construction of DNA molecules [3] to find the disentangled state that minimizes the

relative entropy. The second one is the construction of a genetic algorithm in which the chromosome is a
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string of density matrices and quantum gates are used in the reproduction stage. Both algorithms are

described and numerical simulations are performed. At last, the advantages and disadvantages of the al-

gorithms are discussed.
2. Quantum entanglement measure

As mentioned earlier, the quantum relative entropy will be used to calculate the entanglement, E. This
measure is equal to the von Neumann reduced entropy when applied to pure states and it is an upper bound

on the distillable entanglement. It was introduced by Vedral and Plenio [4–6] and, in a short way, it can be

described as follows: The entanglement of a composite quantum state C, a positive Hermitian matrix with

unit trace, can be given by the minimal distance between it and a disentangled state:

EðCÞ ¼ min
q2d

DðCkUÞ; ð1Þ

where d is the set of all possible disentangled state. For the distance D, not necessarily a metric, we can use

the quantum relative entropy, given by [4–6]:

DðCkUÞ � SðCkUÞ ¼ TrðC lnC� C lnUÞ; ð2Þ

where Tr denotes the trace operation. Since we must search for the solution among all possible disentangled
states, we shall use the most general formula of a disentangled state. For a bipartite state, C2 � C2, the most

general formula is [6]

U ¼
X16
i¼1

pi
c2ðhiÞ cðhiÞsðhiÞeðiniÞ

cðhiÞsðhiÞeð�iniÞ s2ðhiÞ

� �
� c2ðuiÞ cðuiÞsðuiÞeði/iÞ

cðuiÞsðuiÞeð�i/iÞ s2ðuiÞ

� �
; ð3Þ

where c and s are abbreviations for cosine and sine functions, respectively. The coefficients pi are given by

pi ¼ sinðwi�1Þ
Y15
j¼i

cosðwjÞ
" #2

with w0 ¼ p=2 ð4Þ

and the sum of all pis is equal to unity.
3. An algorithm to calculate the minimal relative entropy – CAA

In this section, it is described the classical assembly algorithm, CAA, to implement the minimization

procedure required by the relative entropy of entanglement. The algorithm is based on the assembly process

that is a variation of the search process, where the objective is not to find the desired solution in a database
but assembly it using the available building blocks. For example, for the DNA construction the building

blocks are the nucleotide bases. These bases are available in the environment and one of them is chosen

randomly, if the basis chosen is good for the solution it is maintained, otherwise, it is discarded and the

random choice is repeated till the DNA molecule is complete [3]. For the minimization of the relative

entropy, the corresponding of the DNA molecule is a binary string, which represents a codification of the

solution, and the building blocks are the bits 0 and 1. If the solution is better with the kth bit of the string

equal to i (0 or 1) it is maintained, otherwise it is inverted. To code the possible solution in a binary string,

each angle in (3–4) is coded in a string of 10 bits, where the string 000 (hex) corresponds to the angle 0 rad
and the string 3FF (hex) corresponds to the angle 2p rad. The possible solution is formed placing the 79
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strings together, in sequence, and, therefore, it has 790 bits. With this arrangement, our space of solutions

has 2790 elements, making a brute-force method impossible, at least with the velocity of the present com-

puters. Suppose that we are searching for a disentangled state U whose distance from C is equal to Dist,
SðCkUÞ ¼ Dist. The algorithm to search for C consists of generate one random solution (string of bits)

and to test, for each bit of the string, what is its best value for the solution, 0 or 1. If jDist�
SðCkUk¼0Þj6 jDist � SðCkUk¼1Þj, where Uk¼0ð1Þ is the density matrix obtained with the kth bit set equal to

0(1), then the kth bit of the string is set equal to 0, otherwise, it is set equal to 1. After reach the last bit of

the string, the first bit is tested again and the process is repeated till the accuracy and/or time requirements
are reached. The commented algorithm is shown below:
x ¼ rand bit sequenceð790Þ Generates a random bit string of 790 bits

For n ¼ 1 to END END controls the accuracy of the solution and time of processing

For k ¼ 1 to 790 Each bit of the solution is tested

xðkÞ ¼ 0 The kth bit is set equal to 0

U0 ¼ state disentangledðxÞ The matrix form is recovered from the bit string, Eqs. (2)–(4)

err0 ¼ jDist � SðCkU0Þj The error when the kth bit is set equal to 0 is calculated
xðkÞ ¼ 1 The kth bit is set equal to 1

U1 ¼ state disentangledðxÞ The matrix form is recovered from the bit string, Eqs. (2)–(4)

err1 ¼ jDist � SðCkU0Þj The error when the kth bit is made equal to 1 is calculated

if (err06 err1) Compare the errors when the kth bit is set equal to 0 and 1

xðkÞ ¼ 0 The value of the kth bit is set equal to 0 if err06 err1

else

xðkÞ ¼ 1 The value of the kth bit is set equal to 1 if err16 err0

end
end

end

U ¼ state disentangledðxÞ The matrix form is recovered from the bit string, Eqs. (2)–(4)

E ¼ SðCkUÞ The entanglement is made equal to the distance between C and U
In order to calculate the relative entropy of entanglement we only set Dist ¼ 0. The crucial point for

the velocity of the algorithm is the calculation of the relative entropy, (2), since it requires the cal-

culation of the logarithm of a matrix. Any algorithm to calculate the eigenvalues and eigenvectors of

matrices can be used. The first term in the right-hand side of (2) is the von Neumann entropy of C and
it can be calculated by

TrðC lnCÞ ¼
X
i

li logðliÞ; ð5Þ

where li are the eigenvalues of C. The logarithm of the density matrix in the second term of the right-hand

side of (2) is calculated by

lnðUÞ ¼ C

lnðe1Þ 0 0

0 . .
.

0

0 0 lnðe4Þ

2
64

3
75C�1; ð6Þ

where e1–4 are the eigenvalues of U and C is the matrix whose columns are the corresponding eigenvectors
of U. When using the software MATLAB, for example, this procedure is faster than to use the logm
function.
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4. Simulations using the CAA

In order to test the CAA we will calculate the entanglement of the Werner states [6,7], the family of states

introduced by Horodecki [8], and some mixed states chosen randomly. The results are compared with the

results obtained by the genetic algorithm, GA, presented in [9] and the entanglement of formation [10],

since it is an upper bound for the entanglement of two-qubit bipartite states. The Werner states are defined

by

W ¼ F jw�ihw�j þ 1� F
3

ðjwþihwþj þ j/�ih/�j þ j/þih/þjÞ; ð7Þ
j/�i ¼ ð1=
ffiffiffi
2

p
Þðj00i � j11iÞ; jw�i ¼ ð1=

ffiffiffi
2

p
Þðj01i � j10iÞ; ð8Þ
W ¼ F

0 0 0 0

0 0:5 �0:5 0

0 �0:5 0:5 0

0 0 0 0

2
664

3
775þ 1� F

3

1 0 0 0

0 0:5 0:5 0

0 0:5 0:5 0

0 0 0 1

2
664

3
775; ð9Þ

where the states in (8) form the Bell�s basis and the states j00i, j01i, j10i and j11i form the standard basis.
The parameter F , belonging to the interval ½0:25; 1�, is called fidelity. In Fig. 1 we can see the minimal

relative entropy, Sg, for Werner states, with F varying in the interval ½0:5; 1�, obtained by the GA of [9],

taking the average of the curves for 500, 700 and 1200 generations. The entanglement of Werner states

using the CAA is presented in Fig. 2. In this figure, EF (dashed line) is the entanglement of formation and S
(dotted line) is the minimal relative entropy. Moreover, the minimal relative entropy is fitted by a poly-

nomial of degree 5 (continuous line). The curves in Figs. 1 and 2 are in good agreement with the curve

presented in [6]. Let us consider now the family of states introduced by Horodecki [8]:

C ¼ qjW1ihW1j þ ð1� qÞjW2ihW2j; ð10Þ
Fig. 1. Average curve (500, 700 and 1200 generations) for the entanglement of Werner states, using relative entropy (Sg) calculated by a

GA, versus fidelity (F ).



Fig. 2. Entanglement of Werner states versus fidelity (F ): entanglement of formation (EF, dashed line), relative entropy (S, dotted line)

calculated by CAA and polynomial of degree 5 (continuous line).

R.V. Ramos / Journal of Computational Physics 192 (2003) 95–104 99
jW1i ¼ aj00i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
j11i; ð11Þ
jW2i ¼ aj10i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
j01i; ð12Þ

where 0 < q; a < 1. The density matrix (10) in the standard basis is

C ¼

qa2 0 0 qa
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p

0 ð1� qÞð1� a2Þ ð1� qÞa
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
0

0 ð1� qÞa
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ð1� qÞa2 0

qa
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
0 0 qð1� a2Þ

2
664

3
775: ð13Þ

In Fig. 3 it is shown the entanglement of formation (dashed line), EF, the relative entropy of entanglement

using the GA of [9] (small dots), Sg, and the relative entropy of entanglement based on the relative entropy
using the CAA (large dots), S. In this simulation it was used a ¼ 0:75 and q varying in the interval ð0; 1Þ. As

can be seen in Fig. 3, the entanglement of formation and both relative entropies have the same behavior

but, as expected, the former is larger than the others. Further, we can also see a good agreement between

the curves obtained by the GA and the CAA. In the last simulation, shown in Fig. 4, 100 mixed states were

choose randomly [11,12] and, for these states, the entanglement of formation, EF, and relative entropy, S,
were calculated using Wooter�s equation and the CAA, respectively. As can be observed in Fig. 4, both, EF

and S, have roughly the same behavior. Furthermore, as expected the entanglement of formation is always

larger than relative entropy (all points are below the line EF ¼ S).
5. Advantage and disadvantage of the CAA

The main advantage of the CAA is its very easy implementation despite the large number of parameters

involved, 79. It is not as fast as the gradient method used in [6] but, for the same accuracy, it is faster than

the genetic algorithm proposed in [9]. The CAA presented in Section 3 is a first-order algorithm, in the sense

that only one bit is tested per time. Higher-order CAA algorithms can be easily implemented considering
two or more bits per time. This can improve the accuracy but it will also increase the time of processing. For



Fig. 3. Entanglement of Horodecki states versus q ða ¼ 0:75Þ: entanglement of formation (EF, dashed line), relative entropy (Sg, small

dots) using GA and relative entropy (S, large dots) using CAA.

Fig. 4. Entanglement of formation (EF) versus relative entropy of entanglement (S) using CAA, for 100 mixed states chosen randomly.
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two-qubit bipartite mixed states, the first-order CAA algorithm has shown good results. For pure states

chosen randomly, in a not presented simulation, the maximal error jSvN � Sj was close to 0.02, where SvN is

the von Neumann entropy of each partial state.
6. Genetic algorithm using density matrices and quantum gates

Genetic algorithm is a computational technique based on the evolution of the species [13]. A possible

solution of the problem is coded in a binary string, called chromosome. An initial population of chro-

mosomes is created (randomly) and processed by natural operators: natural selection (by tournament),

reproduction (crossover: exchange of parts of the binary string between chromosomes; and mutation:
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inversion of one of the bits of the binary string; for both, the position where the exchange and inversion

takes place is chosen randomly) and evaluation of the fitness (how good the solution is). With these rules,

the good features of one solution can be transmitted to the next generation of chromosomes and better

solutions can be found. Natural selection and reproduction are probabilistic stages and, hence, a genetic

algorithm is a random process. This technique has been used successfully in several kinds of problems,

where the search of a minimal or a maximal value is necessary, even when local minima (or maximal) are

present. A natural generalization of a binary string is a string of density matrices. Hence, it is possible to use

the structure of a genetic algorithm having a sequence of density matrices as a chromosome and using
quantum operations in the reproduction in order to find the best solution in some problems of quantum

information. Let us suppose that we have a problem and its solution is a set of density matrices:

q1q2q3q4q5q6q7q8q9 � � � qN . For example, given a unitary matrix (4� 4) what are the two density matrices,

q1q2, used at the input, that maximize the entanglement of the output total state? The first step to solve a

given problem is creating, randomly, an initial population of chromosomes. This population will be used in

two procedures: reproduction and measurement. The reproduction consists of two steps: mutation and

crossover. Mutation consists in the application of a single-qubit gate (unitary matrix 2� 2) in a density

matrix chosen randomly in the string, as shown in Fig. 5. After the mutation, the kth density matrix of the
chromosome, qk, is changed by the density matrix UqkU

þ. Single-qubit gates like Not, Pauli�s gates,

Hadamard or any other 2� 2 unitary gates can be tested. For the crossover, two-qubit gates like CNOT,

SWAP or any other 4� 4 unitary matrix can be used. The diagram in Fig. 6 shows the crossover process. As

can be seen in Fig. 6, the ith density matrices of the chromosomes children are TrbðUq1
i � q2

i U
þÞ and

TraðUq1
i � q2

i U
þÞ where q1

i and q2
i are the ith density matrices at the chromosomes parents.

The entropy of the states at the output of U operator shown in Fig. 6 is always equal or larger than the

entropy of the input states. After several runs of the algorithm the partial output states tend to the

maximally mixed state 1=2I , where I is the identity matrix. In this case the unitary operations become
ineffective. In order to decrease the mean entropy of the solution and avoid the presence of several

maximally mixed states in a chromosome, a measurement is performed in some states chosen randomly.

The measurement is realized using the operators M1 ¼ j0ih0j and M2 ¼ j1ih1j. If the state q is measured,

then the possible states after the measurement are q1 ¼ M1qMþ
1 =p1 and q2 ¼ M2qMþ

2 =p2, where p1 and p2
are their probabilities of occurrence, given by p1 ¼ TrðMþ

1 M1qÞ and p2 ¼ TrðMþ
2 M2qÞ. Hence, during the

measurement stage, according to the result of a random choice obeying the values of the probabilities p1
and p2, the state q is changed by q1 or q2.
Fig. 5. Mutation in the QGA.

Fig. 6. Crossover in the QGA.
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7. Simulations using the genetic algorithm with quantum gates

Given a unitary matrix U (4� 4) what is the pair of density matrices that, when applied at the input,

provides the total output state with maximal entanglement? Mathematically: given U which are qa and qb

that maximizes EF½Uqa � qbÞUþ�, where EF is the entanglement of formation? In order to solve this

problem, a population of chromosomes of two density matrices was created. The crossover was performed

applying the quantum gates CNOT and SWAP, while the mutation was performed applying the quantum

gates Hadamard, Z and Not. The result was compared with a classical genetic algorithm used to solve the
same problem. A hundred simulations using the same U matrix was performed and each simulation had

500 runs (generations). The unitary matrix used was chosen randomly from the ensemble of all unitary

matrices with the natural Haar measure on the group U (4) [12]:

U ¼

�0:12308344431670� 0:21650705747456i �0:93898257589479þ 0:10890455948802i

�0:05871429648377þ 0:70901965092325i �0:18766503177980þ 0:01600920722546i

0:55307259224604þ 0:353928146555348i �0:21809264972165þ 0:02024356381571i

0:01090951857969þ 0:02335557705909i 0:11875617059208� 0:09433889138392i

2
6664
�0:13551362257148� 0:07013508375196i 0:11284621053497þ 0:09170354289840i

�0:02384441200722� 0:04148307342058i �0:59489237790140þ 0:31966070211182i

0:02665771466643� 0:02213183681701i 0:05065731565752� 0:71909996068915i

�0:98652282021661 �0:00358235261998� 0:05561058249039i

3
7775: ð14Þ

Both algorithms, hereafter named by CGA (binary chromosome) and QGA (using density matrices),
reached good results, entanglement close to 1. In Fig. 7 it is shown the average value of the entanglement,

over the 100 simulations, for each run. As can be seen, the QGA was always better than the CGA. Fig. 8

shows, for the same 100 simulations, in which runs the best result was found. The number of generations

needed to find the best result was lower for the QGA.

Another problem where the QGA can be useful is in the calculation of the relative entropy of entan-

glement. In Fig. 9 it is shown the entanglement of formation and the relative entropy for 100 pure states

chosen randomly. According to (3–4), a CGA was used to find the best set of pis and a QGA was used to
Fig. 7. Evolution of the average entanglement (over 100 simulations using the same unitary matrix) of the algorithms CGA and QGA

for 500 generations.



Fig. 9. Entanglement of formation (EF) versus relative entropy of entanglement (S) using QGA, for 100 pure states chosen randomly.

Fig. 8. Generation in which the best result was found for CGA and QGA, for 100 simulations using the same unitary matrix.
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find the best set of density matrices. The stop criterion used was the error, jEf � Sj, lower than 0.01. As can

be seen in Fig. 9, the results obtained by the QGA are in good agreement with the analytical result, since the
points almost lie on the line S ¼ EF.
8. Advantage and disadvantage of using genetic algorithm with density matrices and quantum gates

The main disadvantage is the fact that we have to handle a vector of matrices instead of vector of integer

numbers. Obviously this requires more computer memory and the algorithm is a bit more complex. On the

other hand, no codification is needed and this simplifies the input andoutput of data.Another important point
is that, in the simulations presented, the reproduction stage was very effective, since the best results were found

in a low number of generations. Particularly, the mutation is very effective since it changes one density matrix
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for another one. Thismay not happenwhenwe change only one bit in awhole binary string. For a codification

decimal-to-binary, using 10 bits per parameter, if the mutation changes one of the least significant bits, it will

be very few effective. Because of this, a high mutation rate (0.25) was used in the problems solved. At last, the

algorithm can be easily modified to treat problems of higher dimension. All that we have to do is to change the

dimension of the matrices of the chromosomes and the unitary matrices of the reproduction stage.
9. Conclusions

We explained, briefly, the quantum entanglement measure based on relative entropy. Following, we

proposed an algorithm based on the classical algorithm of DNA construction as an alternative method to

search the disentangled state that is in the minimal distance, in the sense explained in the text, from the state

whose entanglement we want to measure. The computer program showed results that agree with results

presented in the literature and it can be used as a tool for numerical studies of quantum communication

systems, based on quantum entanglement, or to find properties of quantum entanglement. On the other hand,

a genetic algorithm based on a string of density matrices and reproduction using quantum operations, QGA,
opens new possibilities to solve problems of quantum informationwhere the search of aminimal or amaximal

value is necessary. The QGA implemented showed good precision, robustness and easy implementation. The

main disadvantage is its low velocity, as happen for all kind of genetic algorithms. At last, working with

Wooter�s equations for the entanglement of formation the sum (3) can be reduced to four terms, reducing

significantly the number of unknown parameters. However, this is true only for two-qubit bipartite states.

There is still another possibility, once any two-qubit bipartite state has 15 unknown variables, it is possible to

produce bipartite states varying only 27 parameters (3 are real numbers and 12 are complex numbers) and

using theWooter�s equation (or even the Peres–Horodecki criterion) to discard the entangled states produced.
However, since it is important to keep the structure of program easily modifiable for higher dimension and

multipartite system, none of those possibilities was exploited here.
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